S = Where are we g01ng

Language NMoc

Bl »(5) - P(where) x P(are | Where) x P(we | W

CIS 7000 - Fall 2024

From Pytorch to Hugging Face: How
to run your own LLM

Amish Sethi and Matthew Kuo

A Bit About Amish

e Hi! My name is Amish, and | am your head TA

e | was bornin Dallas, Texas and grew up in Pittsburgh, PA

e | am a Juniorin SEAS, majoring in CIS and getting an accelerated masters in CIS as well

e I've been doing research with Professor Naik for about a year now, focusing on how to chaln
LLM optimizations ;

e My hobbies include reading, chess, traveling, and going out with friends

A Bit About Matthew

e Juniorin CIS doing an MSE in CIS
e Bornin Cali and moved to Taiwan for middle/high school

e Research with Mayur about building a foundation model

e Hobbies include Valorant, poker, and running

Announcements

e HWO due yesterday
e HW?1 Part 1 released yesterday and due September 15th

e Wednesday lecture will cover Transformer architecture

Today's Agenda

e PyTorch
o Tensors
o Example Neural Network

e Hugging Face

What is PyTorch?

e A Machine Learning Framework in Python

e Two main features:

o N-dimensional Tensor computation (like NumPy) on GPUs

o Automatic differentiation for training deep neural networks

e Widely used in the machine learning community

O PyTorch

Tensors

Tensors

- High-dimensional matrices (arrays)

Index [2]

rank 0 tensor
dimensions []
scalar

Index [0,2,1]

e
\\

Index [0,0]
\
rank 1 tensor rank 2 tensor
dimensions [5] dimensions [5, 3]
vector matrix

Tensors

/J%J
/

|
\\

rank 3 tensor
dimensions [4, 4, 2]

NNEANEANEAN

\MAVEAVARN

Shape of Tensors

2.0

3.0

4.0

\<

1-D Tensor, shape[3]

w

1.0 2.0 3.0
4.0 5.0 6.0
Y
3

2-D Tensor, shape[2, 3]

11 12 13 14 15
16
1 2 3 4 5
6 7 8 9 10
J
Y
5

3-D Tensor, shape[2, 2, 5]

Creating Tensors

e Directory transform from python list

x = torch.tensor([[1,-1], [-1,1]]) tensor([Ei’ _}. %’])

e Tensor of constant zeros & ones

tensor ([[0., 0.]
x = torch.zeros(2, 2) [0., 0.]

y = torch.ones(2,3)A
tensor (LLL1., 1., 1., 1.

shape .. 1. 1. 1.,

1)

1.1,
1. 111

Common Operations

e Addition/Subtraction e Summation
Z=X+y y = X.sum()
e Power e Mean

y = X.pow(2) y = x.mean()

More Common Operations

e Concatenate multiple tensors
z = torch.cat((x, y), dim=0)

e Stacking multiple tensors
z = torch.stack((x, y), dim=0)

e Squeeze/Unsqueeze

y = torch.squeeze(x)

x3
(Concatenation)—f
3:x

%3
Stack

3x3

2%3%x3

—> unsqueeze —>

«—— Squeeze

3x3

1L x3X3

Transpose

e Transpose the two specified dimensions
x = torch.zeros([2,3])
x.shape = (2,3)
y = x.transpose(0, 1)

x.shape = (3,2)

Data Types

e Note: Using different data types for model and data will cause errors

Data Type dtype

16-bit floating point torch.float16
16-bit brain floating point torch.bfloat16
32-bit floating point torch.float32
8-bit signed integer torch.int8

Device of Tensors

e By default, tensors are on the CPU
e However, you can change this by using the .to() operation

e Changingto CPU
x = X.to(‘cpu’)
e Changingto GPU

x = x.to(‘cuda’)

Gradient Calculation

x = torch.tensor([[1.0, 0.0], [-1.0, 1.0]], requires_grad=True)
z = x.pow(2).sum()
z.backward()

x.grad = outputs [[2.0, 0.0], [-2.0, 2.0]]

Example Neural Network

Training Neural Networks

e Main operations during training:

o Defining the Neural Network (your model)
o Calculating the loss

o Optimizing the weights

Define Neural L Functi Optimization
Network oS Rupction Algorithm

Training and Testing Neural Networks

e Split the dataset into training, validation, and testing

o The ratio can be anything but most of the time it is a 7:2:1 split

|
Single Dataset

|
Single Dataset

Creating a Dataset

4 class SimpleDataset(Dataset):
Reading the data (including labels) and preprocessing them
def __init__ (self, features, labels):
self.features = torch.tensor(features, dtype=torch.float32)
self.labels = torch.tensor(labels, dtype=torch.long)

Returns the length of the dataset
def __len__(self):
return len(self.features)

Returns one sample at a time

def __getitem__(self, idx):
feature = self.features[idx]
label = self.labels[idx]
return feature, label

Dataloader

dataloader = Dataloader(dataset, batch_size=6, shuffle=True)

f

Training: True
Testing: False

=

0O|>|®

Original Data
Queue

Neural Networks

"+ W11
by t X1
1
: W13
9 X2
) «—

-+

Non-Linear Activation Functions

nn.Sigmoid nn.ReLU

@ Re}LU

i S|gnj01d

R(z) =maz(0, z)’

Building Your Own Neural Network

~

lass SimpleNN(nn.Module):
Initialize the models and define the layers
def __init__ (self):

super(SimpleNN, self).__init__ ()

self.fcl = nn.Linear(2, 10)

self.fc2 = nn.Linear(10, 2)

C

Compute the output of the NN
def forward(self, x):
X = torch.relu(self.fcl(x))
x = self.fc2(x)
return X

1
2
3
4
5
6
7
8
9

=
N RO

Loss Functions

nn.MSELoss nn.CrossEntropylLoss
e Mean Squared Error e Cross Entropy
e Mostly for regression tasks e Mostly for classification tasks
Mean
~ Squared
1 n
A 2 _ _
MSE =|— 3 (¥; — V)2 H= =) p(logp(x)
n <
1=1

Optimizers

e Gradient-based algorithms that adjusts the network parameters to reduce the
errors
e Ex. Stochastic Gradient Descent (SGD)

torch.optim.SGD(model.parameters(), Ir)

e For every batch of data:
o Call optimizer.zero_grad() to reset the gradient
o Callloss.backward() to run the backward pass
o Call optimizer.step() to adjust the parameters

Hugging Face

What is Hugging Face

e Hugging Face is a leading platform for natural language processing (NLP) and Al.

e |t provides open-source tools, libraries, and pre-trained models for NLP, machine
learning, and Al applications.

e Popular for the Transformers library, which enables easy access to state-of-the-art
models like BERT, GPT, and T5.

v Hugging Face

Datasets in Hugging Face

e Hugging Face provides access to a vast collection of datasets for NLP tasks
through the datasets library.
e Easily load and explore datasets for tasks like text classification, sentiment
analysis, translation, and more.
e Supports custom datasets, allowing users to prepare data for model training
and evaluation.
e Key features:
o Access datasets via load_dataset() function.
o Datasets are optimized for both speed and scalability.

o Includes built-in dataset versioning and caching

Tokenizers

e Tokenizers convert raw text into a format that models can understand.

e Hugging Face provides an efficient and customizable tokenizers library
to handle tokenization.

e Key features:

o Supports different tokenization techniques like Byte-Pair Encoding (BPE), WordPiece,
and SentencePiece.
o Tokenization happens quickly with parallelization support.

Handles special tokens like [CLS], [SEP], and padding/truncation automatically.
Easily load pre-trained tokenizers with AutoTokenizer.

transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(

tokens = tokenizer('"Hello, Hugging Face!")

Loading Pre-trained models

e Hugging Face makes it easy to load and use pre-trained models for various tasks
like text classification, translation, and text generation.

e Transformers library provides access to state-of-the-art models like BERT, GPT, T5,
and more.

e Steps toload a model:
o Use AutoModel or task-specific classes like AutoModelForSequenceClassification.
o Download and load pre-trained models with one line of code.
o Fine-tune models for specific tasks or use them for inference directly.

m transformers i AutoModelForCausallLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained/()
model = AutoModelForCausallLM.from_pretrained()

inputs = tokenizer(uggi ', return_tensors=)

outputs = model.generate(inputs| | 1, max_length=50)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Trainer

Hugging Face makes it easy to fine-tune
pre-trained models on your custom
datasets.

Use Trainer class to handle training loops,
evaluation, and optimization
automatically.

Define training arguments and train with
the Trainer class.

training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
per_device_train_batch_size=16,
num_train_epochs=3,
logging_dir="./logs",

trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,

trainer.train()

Up Next ...

e Sept 11 Lecture: The Pre-Transformer Era (RNNSs; their Variants, Applications,
and Limitations; Seq2Seq architecture; Attention mechanism).

