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A Bit About Amish

e Hi! My name is Amish, and | am your head TA

e | was bornin Dallas, Texas and grew up in Pittsburgh, PA

e | am a Juniorin SEAS, majoring in CIS and getting an accelerated masters in CIS as well

e I've been doing research with Professor Naik for about a year now, focusing on how to chaln
LLM optimizations ;

e My hobbies include reading, chess, traveling, and going out with friends




A Bit About Matthew

e Juniorin CIS doing an MSE in CIS
e Bornin Cali and moved to Taiwan for middle/high school

e Research with Mayur about building a foundation model

e Hobbies include Valorant, poker, and running



Announcements

e HWO due yesterday
e HW?1 Part 1 released yesterday and due September 15th

e Wednesday lecture will cover Transformer architecture



Today's Agenda

e PyTorch
o Tensors
o Example Neural Network

e Hugging Face



What is PyTorch?

e A Machine Learning Framework in Python

e Two main features:

o N-dimensional Tensor computation (like NumPy) on GPUs

o  Automatic differentiation for training deep neural networks

e Widely used in the machine learning community

O PyTorch



Tensors



Tensors

- High-dimensional matrices (arrays)
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Shape of Tensors
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Creating Tensors

e Directory transform from python list

x = torch.tensor([[1,-1], [-1,1]]) tensor([Ei’ _}. %’])

e Tensor of constant zeros & ones

tensor ([[0., 0.]
x = torch.zeros(2, 2) [0., 0.]

y = torch.ones(2,3)A
tensor (LLL1., 1., 1., 1.

shape .. 1. 1. 1.,
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Common Operations

e Addition/Subtraction e Summation
Z=X+y y = X.sum()
e Power e Mean

y = X.pow(2) y = x.mean()



More Common Operations

e Concatenate multiple tensors
z = torch.cat((x, y), dim=0)

e Stacking multiple tensors
z = torch.stack((x, y), dim=0)

e Squeeze/Unsqueeze

y = torch.squeeze(x)
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Transpose

e Transpose the two specified dimensions
x = torch.zeros([2,3])
x.shape = (2,3)
y = x.transpose(0, 1)

x.shape = (3,2)




Data Types

e Note: Using different data types for model and data will cause errors

Data Type dtype

16-bit floating point torch.float16
16-bit brain floating point torch.bfloat16
32-bit floating point torch.float32
8-bit signed integer torch.int8




Device of Tensors

e By default, tensors are on the CPU
e However, you can change this by using the .to() operation

e Changingto CPU
x = X.to(‘cpu’)
e Changingto GPU

x = x.to(‘cuda’)



Gradient Calculation

x = torch.tensor([[1.0, 0.0], [-1.0, 1.0]], requires_grad=True)
z = x.pow(2).sum()
z.backward()

x.grad = outputs [[2.0, 0.0], [-2.0, 2.0]]




Example Neural Network



Training Neural Networks

e Main operations during training:

o  Defining the Neural Network (your model)
o Calculating the loss

o  Optimizing the weights

Define Neural L Functi Optimization
Network oS Rupction Algorithm




Training and Testing Neural Networks

e Split the dataset into training, validation, and testing

o The ratio can be anything but most of the time it is a 7:2:1 split

|
Single Dataset

|
Single Dataset



Creating a Dataset

4 class SimpleDataset(Dataset):
## Reading the data (including labels) and preprocessing them
def __init__ (self, features, labels):
self.features = torch.tensor(features, dtype=torch.float32)
self.labels = torch.tensor(labels, dtype=torch.long)

## Returns the length of the dataset
def __len__(self):
return len(self.features)

## Returns one sample at a time

def __getitem__(self, idx):
feature = self.features[idx]
label = self.labels[idx]
return feature, label




Dataloader

dataloader = Dataloader(dataset, batch_size=6, shuffle=True)
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Non-Linear Activation Functions

nn.Sigmoid nn.ReLU

@ Re}LU
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Building Your Own Neural Network

~

lass SimpleNN(nn.Module):
## Initialize the models and define the layers
def __init__ (self):

super(SimpleNN, self).__init__ ()

self.fcl = nn.Linear(2, 10)

self.fc2 = nn.Linear(10, 2)

C

## Compute the output of the NN
def forward(self, x):
X = torch.relu(self.fcl(x))
x = self.fc2(x)
return X
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Loss Functions

nn.MSELoss nn.CrossEntropylLoss
e Mean Squared Error e Cross Entropy
e Mostly for regression tasks e Mostly for classification tasks
Mean
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Optimizers

e Gradient-based algorithms that adjusts the network parameters to reduce the
errors
e Ex. Stochastic Gradient Descent (SGD)

torch.optim.SGD(model.parameters(), Ir)

e For every batch of data:
o Call optimizer.zero_grad() to reset the gradient
o Callloss.backward() to run the backward pass
o Call optimizer.step() to adjust the parameters



Hugging Face



What is Hugging Face

e Hugging Face is a leading platform for natural language processing (NLP) and Al.

e |t provides open-source tools, libraries, and pre-trained models for NLP, machine
learning, and Al applications.

e Popular for the Transformers library, which enables easy access to state-of-the-art
models like BERT, GPT, and T5.

v  Hugging Face



Datasets in Hugging Face

e Hugging Face provides access to a vast collection of datasets for NLP tasks
through the datasets library.
e Easily load and explore datasets for tasks like text classification, sentiment
analysis, translation, and more.
e Supports custom datasets, allowing users to prepare data for model training
and evaluation.
e Key features:
o Access datasets via load_dataset() function.
o Datasets are optimized for both speed and scalability.

o Includes built-in dataset versioning and caching



Tokenizers

e Tokenizers convert raw text into a format that models can understand.

e Hugging Face provides an efficient and customizable tokenizers library
to handle tokenization.

e Key features:

o Supports different tokenization techniques like Byte-Pair Encoding (BPE), WordPiece,
and SentencePiece.
o Tokenization happens quickly with parallelization support.

Handles special tokens like [CLS], [SEP], and padding/truncation automatically.
Easily load pre-trained tokenizers with AutoTokenizer.

transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(

tokens = tokenizer('"Hello, Hugging Face!")



Loading Pre-trained models

e Hugging Face makes it easy to load and use pre-trained models for various tasks
like text classification, translation, and text generation.

e Transformers library provides access to state-of-the-art models like BERT, GPT, T5,
and more.

e Steps toload a model:
o Use AutoModel or task-specific classes like AutoModelForSequenceClassification.
o Download and load pre-trained models with one line of code.
o Fine-tune models for specific tasks or use them for inference directly.

m transformers i AutoModelForCausallLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained/( )
model = AutoModelForCausallLM.from_pretrained( )

inputs = tokenizer( uggi ', return_tensors= )

outputs = model.generate(inputs| | 1, max_length=50)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))



Trainer

Hugging Face makes it easy to fine-tune
pre-trained models on your custom
datasets.

Use Trainer class to handle training loops,
evaluation, and optimization
automatically.

Define training arguments and train with
the Trainer class.

training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
per_device_train_batch_size=16,
num_train_epochs=3,
logging_dir="./logs",

trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,

trainer.train()




Up Next ...

e Sept 11 Lecture: The Pre-Transformer Era (RNNSs; their Variants, Applications,
and Limitations; Seq2Seq architecture; Attention mechanism).



