

CIS 7000 - Fall 2024

From Pytorch to Hugging Face: How to run your own LLM

Amish Sethi and Matthew Kuo

A Bit About Amish

- Hi! My name is Amish, and I am your head TA
- I was born in Dallas, Texas and grew up in Pittsburgh, PA
- I am a Junior in SEAS, majoring in CIS and getting an accelerated masters in CIS as well
- I've been doing research with Professor Naik for about a year now, focusing on how to chain LLM optimizations
- My hobbies include reading, chess, traveling, and going out with friends

A Bit About Matthew

- Junior in CIS doing an MSE in CIS
- Born in Cali and moved to Taiwan for middle/high school
- Research with Mayur about building a foundation model
- Hobbies include Valorant, poker, and running

Announcements

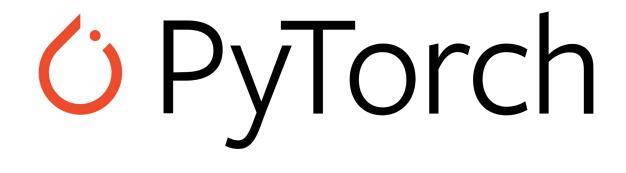
- HW0 due yesterday
- HW1 Part 1 released yesterday and due September 15th
- Wednesday lecture will cover Transformer architecture

Today's Agenda

- PyTorch
 - Tensors
 - Example Neural Network
- Hugging Face

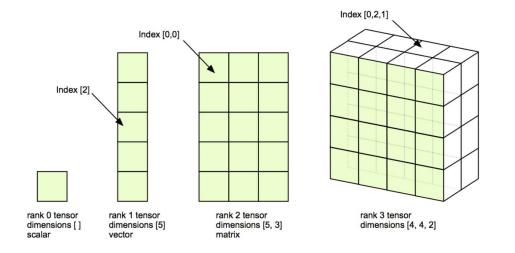
What is PyTorch?

- A Machine Learning Framework in Python
- Two main features:
 - N-dimensional Tensor computation (like NumPy) on GPUs
 - Automatic differentiation for training deep neural networks
- Widely used in the machine learning community



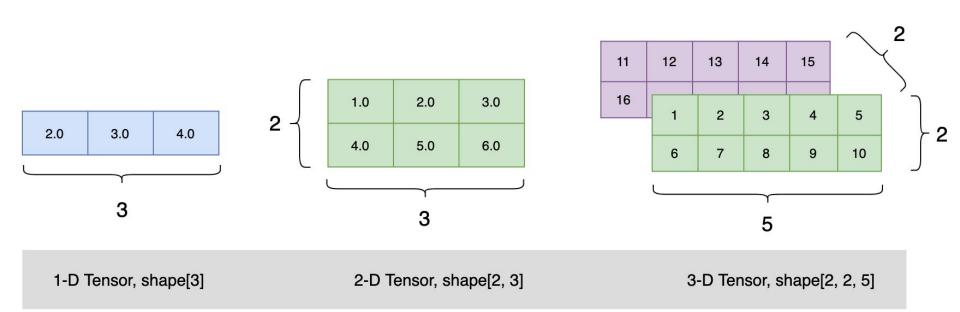
Tensors

- High-dimensional matrices (arrays)



Tensors

Shape of Tensors



Creating Tensors

• Directory transform from python list

x = torch.**tensor**([[1,-1], [-1,1]])

• Tensor of constant zeros & ones

Common Operations

Addition/Subtraction

z = x + y

• Power

y = x.pow(2)

• Summation

y = x.sum()

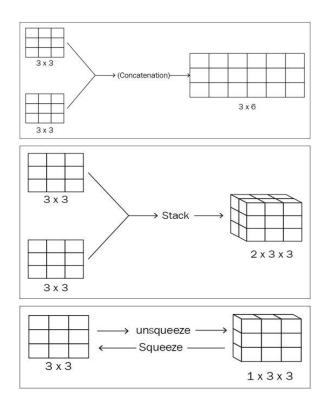
• Mean

y = x.mean()

More Common Operations

- Concatenate multiple tensors
 - z = torch.**cat**((x, y), dim=0)
- Stacking multiple tensors
 - z = torch.**stack**((x, y), dim=0)
- Squeeze/Unsqueeze

y = torch.**squeeze**(x)



Transpose

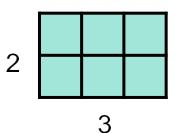
• Transpose the two specified dimensions

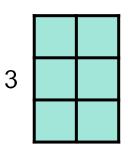
x = torch.zeros([2,3])

x.shape \Rightarrow (2,3)

y = x.**transpose**(0, 1)

x.shape \Rightarrow (3,2)





2

• Note: Using different data types for model and data will cause errors

Data Type	dtype
16-bit floating point	torch.float16
16-bit brain floating point	torch.bfloat16
32-bit floating point	torch.float32
8-bit signed integer	torch.int8

Device of Tensors

- By default, tensors are on the **CPU**
- However, you can change this by using the .to() operation
- Changing to <u>CPU</u>

x = x.to(**'cpu'**)

• Changing to <u>GPU</u>

x = x.to(**'cuda**')

x = torch.tensor([[1.0, 0.0], [-1.0, 1.0]], requires_grad=True)

z = x.pow(2).sum()

z.backward()

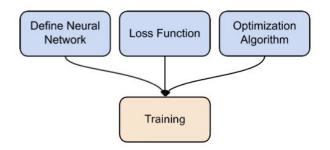
 $x.grad \Rightarrow outputs [[2.0, 0.0], [-2.0, 2.0]]$

$$egin{aligned} egin{aligned} egin{aligned} 1\ x = egin{bmatrix} 1 & 0\ -1 & 1 \end{bmatrix} & egin{aligned} 2\ z = \sum_i \sum_j x_{i,j}^2 \ egin{aligned} 3\ ect \\ ett \\ ect \\ ett \\ e$$

Example Neural Network

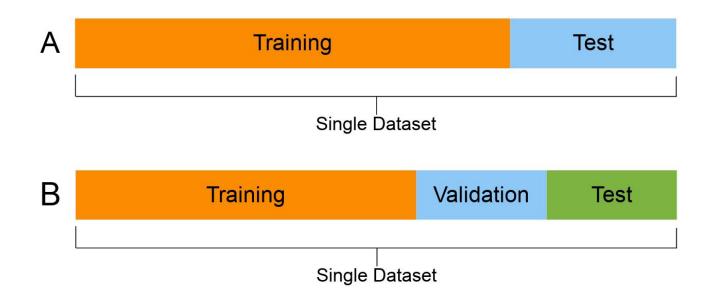
Training Neural Networks

- Main operations during training:
 - Defining the Neural Network (your model)
 - Calculating the loss
 - Optimizing the weights

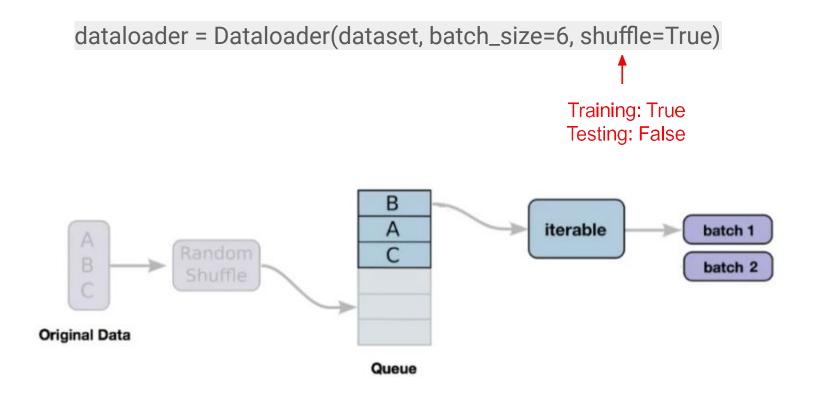


Training and Testing Neural Networks

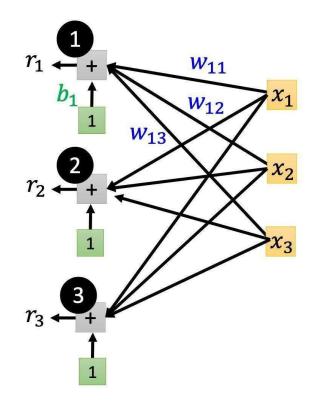
- Split the dataset into training, validation, and testing
 - The ratio can be anything but most of the time it is a 7:2:1 split

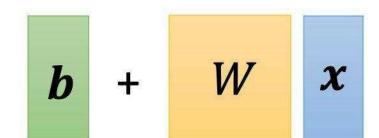


```
4 class SimpleDataset(Dataset):
 5
      ## Reading the data (including labels) and preprocessing them
 6
      def init (self, features, labels):
 7
           self.features = torch.tensor(features, dtype=torch.float32)
 8
           self.labels = torch.tensor(labels, dtype=torch.long)
 9
      ## Returns the length of the dataset
10
11
      def __len_(self):
12
           return len(self.features)
13
14
      ## Returns one sample at a time
15
      def __getitem__(self, idx):
           feature = self.features[idx]
16
17
           label = self.labels[idx]
18
           return feature, label
```



Neural Networks

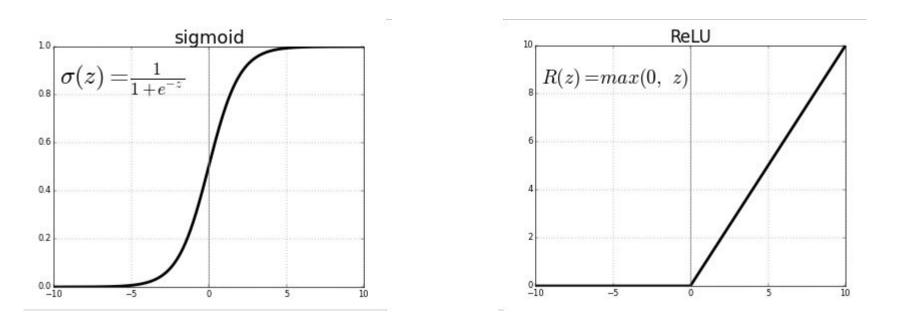




Non-Linear Activation Functions

nn.Sigmoid

nn.ReLU



```
1 class SimpleNN(nn.Module):
 2
      ## Initialize the models and define the layers
 3
      def __init__(self):
           super(SimpleNN, self).__init__()
 4
5
           self.fc1 = nn.Linear(2, 10)
 6
           self.fc2 = nn.Linear(10, 2)
 7
 8
      ## Compute the output of the NN
 9
      def forward(self, x):
           x = torch.relu(self.fc1(x))
10
11
           x = self_f(2)
12
           return x
```

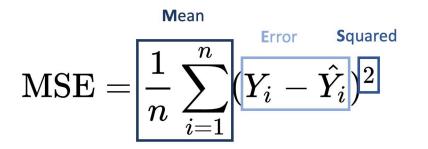
Loss Functions

nn.MSELoss

- Mean Squared Error
- Mostly for regression tasks

nn.CrossEntropyLoss

- Cross Entropy
- Mostly for classification tasks



$$H = -\sum p(x)\log p(x)$$

- Gradient-based algorithms that adjusts the network parameters to reduce the errors
- Ex. Stochastic Gradient Descent (SGD)

torch.optim.SGD(model.parameters(), lr)

- For every batch of data:
 - Call optimizer.zero_grad() to reset the gradient
 - Call loss.backward() to run the backward pass
 - Call optimizer.step() to adjust the parameters

Hugging Face

- Hugging Face is a leading platform for natural language processing (NLP) and AI.
- It provides open-source tools, libraries, and pre-trained models for NLP, machine learning, and AI applications.
- Popular for the *Transformers* library, which enables easy access to state-of-the-art models like BERT, GPT, and T5.

Datasets in Hugging Face

- Hugging Face provides access to a vast collection of datasets for NLP tasks through the datasets library.
- Easily load and explore datasets for tasks like text classification, sentiment analysis, translation, and more.
- Supports custom datasets, allowing users to prepare data for model training and evaluation.
- Key features:
 - Access datasets via load_dataset() function.
 - Datasets are optimized for both speed and scalability.
 - Includes built-in dataset versioning and caching

Tokenizers

- Tokenizers convert raw text into a format that models can understand.
- Hugging Face provides an efficient and customizable tokenizers library to handle tokenization.
- Key features:
 - Supports different tokenization techniques like Byte-Pair Encoding (BPE), WordPiece, and SentencePiece.
 - Tokenization happens quickly with parallelization support.
 - Handles special tokens like [CLS], [SEP], and padding/truncation automatically.
 - Easily load pre-trained tokenizers with AutoTokenizer.

```
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
tokens = tokenizer("Hello, Hugging Face!")
```

Loading Pre-trained models

- Hugging Face makes it easy to load and use pre-trained models for various tasks like text classification, translation, and text generation.
- Transformers library provides access to state-of-the-art models like BERT, GPT, T5, and more.
- Steps to load a model:
 - Use AutoModel or task-specific classes like AutoModelForSequenceClassification.
 - Download and load pre-trained models with one line of code.
 - Fine-tune models for specific tasks or use them for inference directly.

```
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("gpt2")
model = AutoModelForCausalLM.from_pretrained("gpt2")
inputs = tokenizer("Hello, Hugging Face!", return_tensors="pt")
outputs = model.generate(inputs["input_ids"], max_length=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

- Hugging Face makes it easy to fine-tune pre-trained models on your custom datasets.
- Use Trainer class to handle training loops, evaluation, and optimization automatically.
- Define training arguments and train with the Trainer class.

Define training arguments
training_args = TrainingArguments(
 output_dir="./results",
 evaluation_strategy="epoch",
 per_device_train_batch_size=16,
 num_train_epochs=3,
 logging_dir="./logs",

Initialize Trainer
trainer = Trainer(
 model=model,
 args=training_args,
 train_dataset=train_dataset,
 eval_dataset=eval_dataset,

Train the model
trainer.train()

• **Sept 11** Lecture: The Pre-Transformer Era (RNNs; their Variants, Applications, and Limitations; Seq2Seq architecture; Attention mechanism).