
Professor Mayur Naik

CIS 7000 - Fall 2024

From Pytorch to Hugging Face: How 
to run your own LLM

Amish Sethi and Matthew Kuo



A Bit About Amish

● Hi! My name is Amish, and I am your head TA

● I was born in Dallas, Texas and grew up in Pittsburgh, PA

● I am a Junior in SEAS, majoring in CIS and getting an accelerated masters in CIS as well

● I’ve been doing research with Professor Naik for about a year now, focusing on how to chain 
LLM optimizations

● My hobbies include reading, chess, traveling, and going out with friends



A Bit About Matthew

● Junior in CIS doing an MSE in CIS

● Born in Cali and moved to Taiwan for middle/high school

● Research with Mayur about building a foundation model

● Hobbies include Valorant, poker, and running



Announcements

● HW0 due yesterday

● HW1 Part 1 released yesterday and due September 15th

● Wednesday lecture will cover Transformer architecture



● PyTorch

○ Tensors

○ Example Neural Network

● Hugging Face

Today’s Agenda



What is PyTorch?

● A Machine Learning Framework in Python

● Two main features:
○ N-dimensional Tensor computation (like NumPy) on GPUs

○ Automatic differentiation for training deep neural networks

● Widely used in the machine learning community



Tensors



Tensors

- High-dimensional matrices (arrays)



Shape of Tensors



Creating Tensors

● Directory transform from python list

x = torch.tensor([[1,-1], [-1,1]])

● Tensor of constant zeros & ones 

x = torch.zeros(2, 2)

y = torch.ones(2,3)



Common Operations

● Addition/Subtraction

z = x + y

● Power

y = x.pow(2)

● Summation

y = x.sum()

● Mean

y = x.mean()



More Common Operations

● Concatenate multiple tensors

z = torch.cat((x, y), dim=0)

● Stacking multiple tensors

z = torch.stack((x, y), dim=0)

● Squeeze/Unsqueeze

y = torch.squeeze(x)



Transpose

● Transpose the two specified dimensions

x = torch.zeros([2,3])

x.shape ⇒ (2,3)

y = x.transpose(0, 1)

x.shape ⇒ (3,2)



Data Types

● Note: Using different data types for model and data will cause errors

Data Type dtype

16-bit floating point torch.float16

16-bit brain floating point torch.bfloat16

32-bit floating point torch.float32

8-bit signed integer torch.int8



Device of Tensors

● By default, tensors are on the CPU

● However, you can change this by using the .to() operation

● Changing to CPU

x = x.to(‘cpu’)

● Changing to GPU

x = x.to(‘cuda’)



Gradient Calculation

x = torch.tensor([[1.0, 0.0], [-1.0, 1.0]], requires_grad=True)

z = x.pow(2).sum()

z.backward()

x.grad ⇒ outputs [[2.0, 0.0], [-2.0, 2.0]]



Example Neural Network



Training Neural Networks

● Main operations during training:
○ Defining the Neural Network (your model)

○ Calculating the loss 

○ Optimizing the weights



Training and Testing Neural Networks

● Split the dataset into training, validation, and testing
○ The ratio can be anything but most of the time it is a 7:2:1 split



Creating a Dataset



Dataloader

dataloader = Dataloader(dataset, batch_size=6, shuffle=True)



Neural Networks



Non-Linear Activation Functions

nn.Sigmoid nn.ReLU



Building Your Own Neural Network



Loss Functions

nn.MSELoss

● Mean Squared Error

● Mostly for regression tasks

nn.CrossEntropyLoss

● Cross Entropy 

● Mostly for classification tasks



Optimizers

● Gradient-based algorithms that adjusts the network parameters to reduce the 

errors

● Ex. Stochastic Gradient Descent (SGD)

torch.optim.SGD(model.parameters(), lr)

● For every batch of data:

○ Call optimizer.zero_grad() to reset the gradient

○ Call loss.backward() to run the backward pass

○ Call optimizer.step() to adjust the parameters



Hugging Face



What is Hugging Face

● Hugging Face is a leading platform for natural language processing (NLP) and AI.

● It provides open-source tools, libraries, and pre-trained models for NLP, machine 
learning, and AI applications.

● Popular for the Transformers library, which enables easy access to state-of-the-art 
models like BERT, GPT, and T5.



● Hugging Face provides access to a vast collection of datasets for NLP tasks 
through the datasets library.

● Easily load and explore datasets for tasks like text classification, sentiment 
analysis, translation, and more.

● Supports custom datasets, allowing users to prepare data for model training 
and evaluation.

● Key features:
○ Access datasets via load_dataset() function.

○ Datasets are optimized for both speed and scalability.

○ Includes built-in dataset versioning and caching

Datasets in Hugging Face



Tokenizers

● Tokenizers convert raw text into a format that models can understand.
● Hugging Face provides an efficient and customizable tokenizers library

to handle tokenization.
● Key features:

○ Supports different tokenization techniques like Byte-Pair Encoding (BPE), WordPiece, 
and SentencePiece.

○ Tokenization happens quickly with parallelization support.
○ Handles special tokens like [CLS], [SEP], and padding/truncation automatically.
○ Easily load pre-trained tokenizers with AutoTokenizer.



Loading Pre-trained models

● Hugging Face makes it easy to load and use pre-trained models for various tasks 
like text classification, translation, and text generation.

● Transformers library provides access to state-of-the-art models like BERT, GPT, T5, 
and more.

● Steps to load a model:
○ Use AutoModel or task-specific classes like AutoModelForSequenceClassification.
○ Download and load pre-trained models with one line of code.
○ Fine-tune models for specific tasks or use them for inference directly.



Trainer

● Hugging Face makes it easy to fine-tune 
pre-trained models on your custom 
datasets.

● Use Trainer class to handle training loops, 
evaluation, and optimization 
automatically.

● Define training arguments and train with 
the Trainer class.



Up Next …

● Sept 11 Lecture: The Pre-Transformer Era (RNNs; their Variants, Applications,
and Limitations; Seq2Seq architecture; Attention mechanism).


